Khomas 'A Becket Infant Schoo, Progression in Calculataion Policy

This document is designed to help parents of Thomas A^{\prime} Becket Infant school to see how the key concepts of number are taught in Maths. We have given each stage a number which begins at one and progresses upwards as the children develop. We haven't put an age or year group by each stage as not all children learn at the same speed or in the same way. If you are unsure which stage your child is at then please do not hesitate to contact your child's teacher.
We hope that you find this document helpful so that you have a better understanding of how to support your child at home. Mrs Wilson 2019

Dice

Cuisenaire

Peg Boards

Multilink

Unifix

Money

Progression in Addition

count on, add,
forwards, plus, sum, total, how many altogether? And, how many more?, score, +, addition, double, near double, 1 more, 2 more, 10 more, 100 more, is the same as,
balances with and recombines

Stage One- Understand addition as combining two groups.

Stage Two - Using a number track/number line for addition.

Steps to success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can use a number track to count on and find the answer to an addition sum up to 10 and then to 20.	Count on add, plus, 1 more than, addition, 1 more, 2 more, 10 more How many altogether? How many more? = + What would be...?	At this stage children will be doing a lot of practical recording using equipment and many will continue to use pictorial representations, gradually moving towards number tracks/lines, (empty) number lines, grids and cards as a visual resource. Children will use number tracks to count up on: What is 5 add 3 ? What is 3 more than 5 ? Missing Number Sentences $5+3=\square \quad 3+\square=7$ (recording number statements) Teacher modelling: Drawing jumps on numbered lines to support understanding of the mental method. Children: To create their own jumps using Freddy Frog on a number line and also create their own numbers from an empty number line. $7+4=\square$ Children are shown that with addition the order of adding does not matter. For example, 3+4=7 and 4+3=7. This is known as the associative law.	Hold larger number in head then use fingers to count on number bonds to 10. Put objects in a line, add 1 to the end of the line and count how many altogether. Choose a number, what is X more? Put number cards in order and use to help. Draw a chalk number line/use number tiles, get children to jump like Freddy Frog!	Fingers Compare bears Bead strings Unifix/ mulitlink Numicon 100 square Number lines Cubes Number cards Chalk

Stage Three - Using an empty number line for addition.

Steps to success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
	Count on, bigger number, adding, combining, jumps What number will you start with? How many jumps will you need? What do we need to remember about our jumps? What number have you reached?	An empty number line is similar to a number track and uses the same principles of counting in order but there are no numbers to begin with. The children are taught to draw their own number line and start with the biggest number. Initially children will be adding single digits and therefore will be counting in ones, but as the numbers become higher the children will begin to use partitioning.	H T U Eg. $300+40+7$ Partition 2 and 3 digit numbers into H T U Number bond facts to 10/20/100play number bond tennis (say a number, they say the number that makes 10/20/100) Using Dienes counting on by starting with the largest number in a sum, using a number line, square or in their head.	Practical things if still required (see mental stage) number lines 100 square coins whiteboards multilink dienes unifix

Stage Four - Partitioning and Recombining

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can do addition more efficiently by partitioning numbers into tens and ones and then recombining them.	Count on, add, forwards, plus sum, total one more, two more, ten more, hundred more, is the same as, balances with and recombines How many tens altogether? How many units/ones?	This stage uses the children's understanding of place value to simplify the addition process. When partitioning and recombining, it is important to first begin with adding numbers where there is no need to cross any boundaries of ten/hundred e.g. $24+13$ where the 3 and 4 can add to make a number below 10 and the 20 and 10 add to make a number below 100 ...not $24+17$ as the 4+7 would equal 11- over the ten. Once confident then the boundary can be crossed. Partitioning and recombining without crossing the 10/100 barrier. $34+22=$ First partition each number: 30 and 4; 20 and 2 Then add the tens: $30+20=50$. Then add the units so $4+2=6$. Finally combine the answers to get your overall total: $50+6=56$ The same rules apply when adding hundreds, tens and units. Partitioning and recombining crossing the 10/100 barrier $47+39=$ Same as above, partition the number-40 and 7,30 and 9. Add the tens-40+30=70; add the units-7+9=16 then add the totals together, being careful to remember to add on the extra ten$70+16=86$ OR 70+16=70+10+6=80+6=86. Crossing the tens should only be done once children are confident in partitioning and recombining within the $10 \mathrm{~s} / 100 \mathrm{~s}$.	Number bonds facts to 10, 20100 Partition 2 and 3 digit numbers into H T U - Play Stamp, Clap, Click- say a three digit number, children stamp the hundreds, clap the tens and click the ones.	Number grids Number lines Numicon Dienes Coins

Stage Five - Beginning the column method

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can add two 2 digit numbers using column addition. I can lay out my work accurately so that the tens and units are in the correct columns	count on, add, forwards, plus sum, total one more, two more, ten more, hundred more, is the same as, balances with and recombines How many tens altogether? How many units/ones?	It is important when using this method that the columns line up with tens under tens and units under units so that it is clear which numbers should be added together. It is important to begin with numbers that do not cross the 10 boundary to begin with and children will often refer back to the partitioning and recombining method (expanded column method) to complete this. In this method, children should add the units first in preparation for more complicated sums later on. Column Method (without crossing the ten) Column Method (crossing the ten)	Number bonds facts to 10, 20100 Partition 2 and 3 digit numbers into H T U - Play Stamp, Clap, Clicksay a three digit number, children stamp the hundreds, clap the tens and click the ones.	Number grids Number lines Numicon dienes Coins

Progression in Multiplication

x number of times, multiply, multiplied by, multiple of, lots of once, twice, three times etc.. repeated addition, array, row, groups of, column, double, group in pairs, threes... tens

Stage One- Counting through grouping

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can talk about how many in a set and how many altogether. I can use the appropriate vocabulary.	Double, add, add on, count on, Once, twice, three times.... How many groups are there? How many items are in each group?	Children will be counting in $2 s, 5$ s and 10 s using practical equipment. They will be grouping objects into these denominations as a visual representation. 2 4 6	Lots of counting games! Counting objects round the house/ room in $2 \mathrm{~s}, 10 \mathrm{~s}$ and $5 s$ Doubling games	Counters Toys Compare bears Socks Buttons Feet/Hands Songs Cubes/Multi-link Gloves

Stage Two- Multiplying through repeated addition

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can count out groups of equal sizes. I can understand that repeated addition is adding the same number over and over	Add, addition, repeated addition, times, multiply, multiplied by, lots of How many groups are there? How many items are in each group? Are the same number of objects in each group?	Children move on to doubling a number to get used to adding the same number again. From this, children then begin to add the same number more than twice. This is known as repeated addition. E.g. $2+2+2=6$ Children use number tracks/lines to count up on in 2's.	Counting in 2 se e. 9 counting socks, shoes, animal's legs... Counting in 5 s e.g counting fingers, fingers in gloves, toes Counting in 4's animal legs.. Sing counting songs! Play matching games.	Counters Toys Compare bears Socks Buttons Feet/Hands Songs Cubes/Multi-link

Stage Three- Using arrays for multiplication

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can draw an array to represent a given multiplication I can identify an array and the multiplication that it represents.	Addition, Repeated addition, Columns, Rows, Lots of, groups of, times, multiplied by, multiplication, Equals, commutative Array, grid, representation What have you got? How many times have you got it?	Children will use their newly acquired repeated addition skills to form an array. An array is a pictorial representation of a multiplication calculation. From this the children will begin to understand and recognise the notation for multiplication. We describe this as '2 five times'. 4 multiplied by 3 or 4 three times $4 \times 3=$ Children will also be shown the commutative law in that multiplications can be done either way.	Counting on and back in 1's, 2's, 5's 10's. Look for arrays in real life situations e.g. cake tins, vine tomatoes, fizzy drink packets, chocolate boxes etc	Counters Toys Compare bears Socks Buttons Feet/ Hands Songs Cubes/ Multi-link Number lines.

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can understand multiplication and represent it as jumps on a number line	Lots of, groups of, times, Multiplied By Repeated addition Eg 2×4... How many do you have in a set? How many times have you got it? How many sets of...?	Children will split the array onto a number line to understand the concept of counting on repeatedly. They are encouraged to 'count the jumps' as they go to make sure they are multiplying the right number of times. E.G. $4 \times 3=$ The objects are then taken away and the children are able to use their counting skills to solve multiplication sentences using an empty number line. $\text { E.G. } 2 \times 6=$	Counting on and back in 1's,2's, 5's 10's. Look for arrays in real life situations e.g. cake tins, vine tomatoes, fizzy drink packets, chocolate boxes etc	Cubes Arrays Bags/sets Number lines Counters Cubes

Interactive teaching programmes can be used with this-grouping and bead bar.
Once the image is in place what are the different number sentences?
$4+4+4=12$
$4 \times 3=12$

As above but without the counters-use the number line on the Interactive teaching programmes.

Context of problems

Cuisianaire-introduce by playing (staircase, children to feel the size behind their back). Move on to using the ones as a measure-how many ones in 5 . How many ways could you make the 12 rod with the same rods? E.g. $1 \times 12=12$ 2×6=12 3×4=12 4×3=12

Arrays-How many numbers can you not make an array from?
Square numbers-what arrays make squares? What are the multiplication sentences?

Progression in Subtraction

Subtract, take away, minus, leave, how many are left/left over?

1 less, 2 less, 10 less,
20 less, 100 less, difference between,

Stage One- Understand subtraction as practically taking away objects.

Steps to Success	Vocabulary Key Questions	How it will look?								What can you do?	What can you use?
I can subtract one from a small group of objects to 10 , then 20. I can subtract a small number of objects from 10 , then 20.	Count back (from to), take away, leave, minus, how many are left/left over? one less, two less, ten less, = what is the difference between? If I take 2 apples, how many will be left over? What if....? If you count back 4 from 10, what number do you get? What number is 2 less than 8?	Mostly pictorial representations Using models of concrete apparatus (e.g. socks/apples/ unifix etc) to demonstrate how you can take a smaller number away from a larger number. There were 10 socks on the washing line and 2 blew away How many are left? Children can draw 10 circles (as socks) and cross out 2 before counting what is left. Or children can use 10 objects and physically take 8 away before counting what is left. They could also use their fingers. Children don't have to formally record but are made aware of symbols - = Teacher will verbalise and model written method. $10-2=8$								Use your fingers to count how many are left Visualisation (count a group of objects. Take objects away and count how many are left over) Singing songs that involve taking away and physically moving- (5 currant buns, 5 little speckled frogs, 10 green bottles) Counting back from a number to find a total.	Anything! For example: Fingers, Compare Bears, Bead strings, Unifix/ multilink, Fruit, Toys, Pencils, 100 squares, Number tracks/lines, Songs/Rhymes, Coins Numicon

Stage Two - Using a number track/number line for subtraction

Stage Three - Using an empty number line for subtraction

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can use number lines to subtract of two numbers up to 20, then beyond. I can remember to start with the biggest number and dig below the line. I can use a number line more efficiently to subtract a 2 digit number by subtracting the tens first then the units (progress to 3 digits after this) I can use a number line accurately to help me solve subtraction problems.	Count back, (from, to) count back in ones, less than, take away, minus, subtract, leaves, equals, subtract Where are you going to start your number line? Which number are you going to start with? How many digs back do you need to do? What do you need to remember about your digs? What number have you reached?	An empty number line is similar to a number track and uses the same principles of counting in order but there are no numbers to begin with. The children are taught to draw their own number line and start with the biggest number. Initially children will be subtracting single digits and therefore will be counting backs in ones, but as the numbers become higher the children will begin to use partitioning. Counting back in ones Counting back by Partitioning This means splitting the 2 digit number into tens and units.	Partition 2 digit numbers into tens and units $23=20+3$ T U 23 Number Bond facts to $\begin{gathered} 10 / 20 / 100 \\ 5+5=10 \\ 10-5=5 \end{gathered}$ Counting backwards from any number Empty number lines Counting up from a smaller number to a larger using a number line, Mentally or practically using objects. Doubling/Halving Facts Finding neares \dagger ten to help subtract 9 or 11	Numicon to use on the number line. (visual image) Dienes to use on the number line. (visual image) Number Lines 100 squares

Stage Four - Partitioning and Recombining

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can partition the number being subtracted into tens and units I can subtract the units and then the tens for 2 digit subtraction calculations. I can partition the number being subtracted into hundreds, tens and units.	Subtract, take away, minus, less than, tens, units, partition, inverse, total, equals, count back, 1 less, 10 less, What is the number you are subtracting? How many tens are you subtracting? How many units are you subtracting? What is the total now?	Before starting this stage children need to be confident in their understanding of partitioning tens and units and place value. This can be recorded initially as a number line so that children can see the link between the previous recording method and this one. $56-3=53$ (subtract the ones first) What do you have left? $53-20=33$ (subtract the units second) What is the answer? With practise, some children may eventually be able to do this method mentally. Initially it is important to give calculations where the ones and tens so - $56-23=33$ digits do not cross the tens boundary.	Partitioning 2/3 digit numbers into hundreds, tens and units. Number bonds facts to 10, 20 100, e.g. 10-8, 90-20, 13-7 Play Stamp, Clap, Click- say a three digit number, children stamp the hundreds, clap the tens and click the ones. Representing two/ three digit numbers using maths resources/ equipment, such as Dienes.	Numicon Dienes Number Lines 100 squares Place Value Cards

Stage Five - Understanding subtraction as difference between

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can use a number line to find the difference between two numbers by counting on. I can use a number line to help me solve subtraction problems involving money and measures, using the method of counting on.	Count on, difference between, how many more than...how many between? How far apart? Equals, inverse Where are you going to start your number line? Which number are you starting with? Which number are you going to stop at? How many jumps on did you do? What was the difference between the numbers?	What is the difference between 32 and $37 ?$ Children can use Numicon/Dienes to create both the numbers they are finding the difference between, laying them on top of each other to see the visual difference. Children are now taught to 'count on' from 32 to 37 to find the difference between. Initially they can do this on a number line before doing it mentally. The difference between 32 and 37 is 5 Then count the fingers to find the difference...	Counting games Magic Number game- children sit down when they get to the magic number- counting backwards.	Number tracks Number grids Number lines Numicon Dienes Counting Objects Coins

Stage Six - Beginning the column method

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can subtract two digit numbers using the column method. I can lay out my work clearly so that the tens and units are in the correct columns..	Subtract, take away, minus, leave, column, tens, units, carry over, total, equals, count back, What number are you subtracting? What is...take away...? Partition the number into tens and units... How many tens? How many units? What is the total now?	It is important when using this method that the columns line up with tens under tens and units under units so that it is clear which numbers should be subtracted. It is important to begin with numbers that do not cross the 10 boundary and children will often refer back to the partitioning and recombining method (expanded column method) to complete this. In this method, children should subtract the units first in preparation for more complicated sums later on. Column Method (without crossing the ten) Using partitioning and recombining: Column Method (crossing the ten)	Partitioning 2/3 digit numbers into hundreds, tens and units. Number bonds facts to 10, 20 100. Play Stamp, Clap, Click- say a three digit number, children stamp the hundreds, clap the tens and click the ones. Representing 2/3 digit numbers using maths Resources/ equipment, such as Dienes.	Number grids Number lines Numicon Dienes Coins

Progression in Division
Share, share equally, one each, two each...., group in pairs, threes, tens, equal groups of, divide, divided by, divided into, left, left over, how many ...?, group, set, remainders

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can share objects equally between people.	Share, share equally, share between, share fairly, halve How many each? How many in each group? It that number of objects shared equally? Can the number of objects be shared fairly? Is the number odd or even?	At this stage children are introduced to the operation of division as 'sharing equally'. This is done practically with no formal recording. Children will mainly use concrete apparatus and practical activities to divide. They will also use real life and role play sessions to reinforce their understanding. There are 6 sheep. Can you share the sheep equally so that each field has the same number of sheep in? Can you share these sweets out equally so they both have the same amount? How many each? Teacher will model how to record and write a number sentence. Explain that dividing by 2 is the same as halving. Children will physically share objects between 2 groups/people and count how many each group has.	Sharing in real life contexts, e.g. fruit, sweeties, teddies, resources Halving even numbers to 10 using counters and teacher to model , $1 / 2$ of $10=5$ $10 \div 2=5$ Use Numicon to explore how many shape cover another larger one. E.g how many 2 shapes cover an 8 shape?	Anything! Care bears, Counters Small toys Buttons Cubes Pegs Pairs of socks Fingers songs role play, Fruit/food,

Stage Two - Understand Division as Grouping

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can group a number of objects in 2's, 10's and 5's. I can understand division as 'How many in?' I can use my times tables to help me solve division problems.	Share, share equally, share between, divide, repeated subtraction, How many each? How many groups have you got? What are you going to count in? How many groups of.....are in.....?	Children begin to understand the operation of grouping. How many groups have we got? How many are in each group? Children find different ways to record, teacher models recordings.	Share fruit/ sweets with a friend. Cut and share a pizza. Playing cards. Grouping cards together. Sharing beads / loombands when playing games. Rote practise of times tables.	Counters Small toys Food Buttons Cubes Pegs Pairs of socks Fingers Songs Cards Role play

Stage Three - Division on a Number Line

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can understand division as repeated subtraction. I can understand division and represent it as equal digs on a number line.	Share, share equally, one each, two each...., group in pairs, threes, tens, equal groups of, divide,divided by, divided into, left, left over, how many...?, group, set remainder	At this stage children will be consolidating their understanding of division as 'sharing equally' and begin to work more on division as grouping and ways of recording. Children are encouraged to use different strategies for grouping. How many 2's make 8? Children are encouraged to form a link between division and multiplication by using arrays. Children use grouping as a strategy to solve simple division problems and begin to use an empty or marked number lines to record their calculations Children record on a marked number line	During this stage some children will still use many ideas from the previous stage but should begin to move on to using visualisation strategies. This would then lead on to a simple written form of division based on early times table facts. $(2 x 5 \times 10 x)$	Concrete things if still required hoops for sharing whiteboards cubes arrays bags/sets number lines whiteboards

Stage Four - Consolidating Division Methods and Remainders.

Steps to Success	Vocabulary Key Questions	How it will look?	What can you do?	What can you use?
I can solve division calculations with remainders.	Share, share equally, 1 each, 2 each....,group in pairs, 3's, 10's, equal groups of, divide, divided by, divided into, left, left over, how many...?, group, set remainders	At this stage children will still be consolidating their understanding of division as sharing and grouping and solving division problems using marked and empty number lines. Remainders Children are introduced to this through using numbers that do not divide exactly into given amounts e.g. $16 \div 3=5 r 1$ Sharing - 16 shared between 3 , how many left over? Grouping- How many 3's make 16 , how many left over? Using a number line the children can see they are using repeated addition. Next Steps-children will use known number facts, such as doubles, to help them with more challenging calculations. For example 'If I know 48 $\div 4=12$...then I know 96 $\div 4=24$...I will then know that 192 $\div 4=48^{\prime}$	During this stage children will begin to make connections between division and repeated subtraction and division as the inverse to multiplication. They may still use pictorial representations but these will take the form of arrays. Many children will also experience remainders and whether to round up or down.	Arrays bags/sets number lines whiteboards

Real life problems－How many cherries will each child get？How many 5 ps do I have if I have
$50 p$ ？

Numicon－How many 2s make a 10？
Cuisianaire－How many 2 rods do you need to make a 10 rod？
swajqoud fo＋xa＋uoう
are remainders．Relate to real life problems．Children can be introduced to remainders
early on in their learning of division． REMAINDERS－Show children that sometimes you have some left out of the groups－these
What calculations can you see？－as above
As above but without the counters－use the number line on the Interactive teaching pro－
 number of counters．Then put them into groupp of the second number along a number line which

」amsud unoh ta6 of 0 modt hipatDadad \downarrow 6u！pp

04

000
000
000
000

